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Four Decades of Superconducting RF Cavities

(EP collaboration between ANL and 
Karlsruhe)

Paul Markovich – ANL chemistry
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Recent convergence of interest in SCRF community; similar techniques now required for all cavities 
Bulk niobium is the material of choice for today’s high-performance SC cavities

Four Decades of Superconducting RF Cavities

850 MHz β=0.28 ANL

High-Beta~1.0

1st SC spoke 1991 (funded through SDI)

345 MHz β=0.63 ANL

805 MHz β=0.61 JLAB/SNS

97 MHz β=0.1 ANL

1.3 GHz β=1 DESY
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Outline

I. RF surface
e.g. roughness, oxygen, hydrogen

II. Practical Considerations (The current state-of-the-art)
e.g. electropolishing, high-pressure rinsing, facilities
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I. RF Surface: Properties in Bulk Niobium Cavities

Surface Morphology

Surface Chemistry

Surface Roughness

Grain Size

E-beam Welds

Purity (RRR)

Hydrogen

Particle Contaminants

Oxide, Sub-oxides

Field Emission

Rf loss → Quench
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I. RF Surface: Surface Resistance, RF losses, Quality Factor

f
P
EU

U
UQ

IN

ACCo
Int π2

2

=
Δ

=

[ ]WattsdAHRP SIN ∫= 2

2
1

[ ]Ω+= nRTRR RESBCSS ),( ω
Surface resistance modeled 
as T, ω-dependent term plus 
everything else

Power dissipated in the 
cavity walls is product of 
local Rs and the magnetic 
field squared over the cavity 
surface

Quality factor as for classical 
damped oscillator; stored 
energy divided by fractional 
energy loss per cycle



7

Water, hydrocarbons adsorbed to the surface
Several nm of Nb2O5 reforms rapidly even for low partial pressures of O2
Metallic NbOx clusters

I. RF Surface: (Simplified) Niobium Surface

Reference[1]
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I. RF Surface: Surface Roughness

100 μm

10 μm

Surface magnetic fields are enhanced when current runs along a (grain boundary) step
Thermally stable regions of enhanced losses lead to a lowering of observed Q
Low surface roughness likely to be key to achieving very high Q

20o

Reference[2]
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I. RF Surface: Grain Size and E-beam Welds

1 cm
Shown is a (typical) electron beam weld through 3 mm niobium sheet
Surface is before final chemistry
Visible features: Fine grainsa (50 μm rms), large grainb, scratchesc, defectd

a

b
c

d
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I. RF Surface: High Purity (RRR) as a method to increase 
the quench field

Today SC cavities use RRR~200 or higher
Carbon, Nitrogen, Oxygen – 10 ppm
Titanium, Hafnium, Zirconium, Tungsten – 50 ppm
Tantalum, Molybdenum – 500 ppm
Hydrogen – 1 ppm

Defect Size (μm)
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Quench Field vs Defect size

Early SC cavities used RRR~40 (reactor grade)

Reference[3]
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I. RF Surface: Hydrogen and “Q-disease”

Niobium readily picks up hydrogen
At room temperature hydrogen distributed throughout (Nb in α-phase fcc)
At moderately low temperatures (50-150 K) hydrogen in niobium forms hydrides → Rf loss
Below 50 K hydrogen is immobile

Phase diagram for the Nb-H system (Schober and Wenzl 1978)

Reference[4]
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I. RF Surface: Example of Hydrogen Q-disease

345 MHz 
β=0.62

Triple-spoke

T = 2 K

Test #1 Fast (~1 hr.) cooldown

Test #3 Fast (~1 hr.) cooldown

Dwelling in the hydride formation region leads to increase rf losses
Performance (mostly) recovers after recycling to room temperature Reference[5]
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I. RF Surface: Field Emission

Tunneling of electrons at a metal surface through a potential barrier in the 
presence of an applied electric field

Fowler-Nordheim tunneling, J~E2exp(-K/E)

Manifests in SC cavities by the presence of x-rays, primarily bremsstrahlung 
from electrons striking the cavity walls

Experimentally known to be mostly due to loosely attached particulates on 
the RF surface – i.e. dust

Microscopy studies at emitter sites show Ag, Al, C, Ca, Cl, Cr, Cu, Cs, F, Fe, 
In, K, Mg, Mn, N, Na, Ni, O, S, Si, Ti, W, Zn Reference[6]

Amount of field emission is largely determined by final steps in preparation of 
the RF surface and does not represent a fundamental limit
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Field emission turns on rapidly after onset (here @ EACC~5 MV/m)
Quench (thermal instability) often induced by field emission

I. RF Surface: Example of Field Emission from Particulate 
Contamination, spoke cavity @ 4 K

EACC (MV/m)

Q

X-rays @
 2 feet [m

R
/h]

PowerFE~1 Watt

Quench
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I. RF Surface: Processing of Field Emission

Emitters may be destroyed using high-power pulsed processing
RF power of several to hundreds of kilowatts in millisecond pulses
Processing may be enhanced by the introduction of helium gas (0.1-1x10-4 Torr) into the 
cavity vacuum

Reference[7]
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I. The RF Surface: High-field Q-slope

Theoretical basis not fully understood
May be due to oxygen diffusion; hydrogen is not the cause
High-field Q-slope is improved (single-cell 1.3 GHz here) with an in-situ bake
Bake parameters: 120o C for 48 hours typically in vacuum

Reference[8]
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II. Practical Considerations:

There are dozens of primary steps and 
hundreds of minor steps in the fabrication of a 
real SC cavity – almost any one of these has 
the potential to destroy the SC performance
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Specification, procurement, QA of (high RRR) niobium
Fabrication

Electropolish to remove surface damaged layer (100 μm)
Bakeout at high temperature (600-800o C) to degass hydrogen
High-pressure rinsing with ultra-pure water
Clean room drying and assembly

II. Practical Considerations: A Summary of the State-of-
the-Art in Cavity Processing

Die forming
Milling
Wire EDM trimming
Electron beam welding

Many other possible intermediate steps determined by cavity type, 
performance goals, technical capabilities

Final light chemistry
Ultrasonic cleaning
Methanol rinsing
In-situ 120oC bake



19

Process: Developed by Siemens for SC cavities in the early 1970’s
Anode: Niobium cavity
Cathode: High purity Al (1100, 3000 series or similar) roughly tailored to the 
cavity shape; cathode area 10% or more surface area of Nb
Anode-cathode potential ~ 12-18 Volts
Acid composition 85:10 mixture of 96% H2SO4, 40% HF, reagent
Temperature 25-35o C (e.g. chilled water through a hollow cathode)
Duty cycle: Continuous for e-cell geometries, intermittent (1 min on 1 min off)
Average anode current density ~40 mA/cm2

Acid sheer velocity at niobium surface ~ 1 cm/s

II. Practical Considerations: Recipe for EP

Single cell cavity EP
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A plateau in the I-V curve corresponds to the formation of a viscous layer
High points are preferentially removed when in the EP regime  smoothing

2Nb + 5SO4
-- + 5H2O → Nb2O5 + 5SO4

-- + 10H+ + 10e−

Nb2O5 + 6HF → H2NbOF5 + NbO2F · 0.5H2O + 1.5H2O
NbO2F · 0.5H2O + 4HF → H2NbF5 + 1.5H2O

II. Practical Considerations: Fundamental Aspects of EP

Reference[9,10]

Canonical Voltage vs. Current Measured Voltage vs. Current
Characteristic 

roughness

Viscous layer

Niobium
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II. Practical Considerations: EP adaptable to various 
shapes

Co-axial half-wave Double spoke

Quarter-wave

Split-ring
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II. Practical Considerations:
Electropolished Triple-Spoke Resonator: RF surface area 
~1.5 m2
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II. Practical Considerations: EP cathodes

Spoke Cathode End Plate Cathode
Elliptical Cavity Cathode

Hand wound 
cathodes from 
½” 3003 Al 
tubing (left, 
middle)
Single 1.3” OD 
high-purity 
aluminum tube 
(right)
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II. Practical Considerations: Differential electropolishing 
due to orientation of niobium surface

Cavity surface removal measured using a ultrasonic thickness gauge
Cavity flipped after each 50 cycles (1 cycle = 1 minute)
Twice the surface removal for downward facing surfaces as for upward facing surfaces
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II. Practical Considerations: HPR to Remove Particulates 
From an Electropolished Niobium Surface (1750 PSI)

240 μm

Adhesion forces bind particulates to the cavity surface
A high velocity water jet (150 m/s) effectively remove particulates
Practical limit ~ 1 μm

-adhesion forces scale as particle diameter, mechanical force scales as particle area

Reference[11]

Particulates are the most important cause of field emission 
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1. Before HPR 2. After HPR

3. Handled and cleaned96 μm

II. Practical Considerations: Limitations of HPR

1. A BCP surface showing 10 μm-sized particulates
2. After rinsing at high-pressure water at 1750 PSI; small particulates remain
3. After handling with hands, cleaning with ethanol and drying
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HPR nozzles

II. Practical Considerations: High-Pressure Rinse Hardware

Deionized water system
Stainless steel or sapphire tipped nozzles
Filtration on high-pressure sized of the pump
Spray wand, clean room area

0.5, 0.04 μm filter

Reference[12]

Original Horizontal HPR - ANL

Vertical HPR - Cornell

HPR pump
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II. Practical Considerations: High-Pressure Rinse of an 
ATLAS Split-ring

EPEAK=28 MV/m

Robust nature of SRF technology; HPR after 
17 years operations
The highest Q (>6x109 at 2 K)
Highest cw accelerating fields (6.8 MV/m at 2 
K, EPEAK=34 MV/m)
Lowest surface resistance (RRES=2.7 nΩ)
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II. Practical Considerations: Effect of Hydrogen Degassing

Baking at 600-800oC in order to degas hydrogen is required in 
order to achieve the lowest possible rf losses
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II. Practical Considerations: Cavity Performance
Residual Surface Resistance vs. BPEAK

Peak Surface Magnetic Field (Gauss)
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II. Practical Considerations: Joint ANL-FNAL Single Cavity 
Processing Facility

Total Cost with manpower ~$2 M

20 m
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II. Practical Considerations: ANL Portion of the Chemistry 
Facility



33

II. Practical Considerations: SCSPF Shared Class-1000 
Anteroom
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Air Scrubber DI Water System Chiller/EP Supply 

3000 cfm NOx, 
HF scrubber

38 l/m 2-stage RO

1200 gallon storage
750 A 
@ 20 V

10 kW 
Chiller

II. Practical Considerations: ANL-FNAL Shared 
Infrastructure
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@DESY @JLab

II. Practical Considerations: Electropolish Hardware for 9-
cell 1.3 GHz Cavities

Horizontal EP
Cleanable – no sulfur buildup
Aluminum heat exchanger
Fast fill/empty
Direct Water Cooling (upgrade)
Direct experience for FNAL/ANL 
personnel

@ANL

Features
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